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Assessing Evolving Conceptual Knowledge in Software 
Engineering Students 

 
Abstract 
 
Is it more important to “collect more knowledge” or to gain an understanding of how concepts 
relate so that a sustainable learning structure is formed? Active learning proponents would 
suggest it is more important to create a durable conceptual foundation by which new experiences 
are assimilated to grow the personal knowledge base in an orderly, well-formed way. But how 
can one assess that this is happening? In our project-centric courses we have adopted concept 
maps as a technique for evaluating the evolution of student understanding of conceptual 
knowledge in software engineering. This paper motivates the application of this existing 
technique in software engineering education, and presents a concept mapping assessment 
protocol based on a unique expert ranking process. An instance of the protocol implementation 
with results is presented and preliminary conclusions drawn.  
 
1  Introduction 
 
Over the past decade, the software engineering education community has focused significantly 
on defining the body of concepts that both undergraduate and graduate students should (in some 
sense) “know” and be able to apply upon graduation. Efforts such as the SWEBOK1, the SEEK2, 
and the GSwE20093 together with associated certification processes from IEEE (CSDP and 
CSDA) and ISO (ISO/IEC 24773:2008) go to great lengths to define outcomes primarily as 
coverage of the maturing body of knowledge (BOK) in software engineering. The evolution of 
the software engineering BOK and certifications over the past decade+ is a good thing as it 
speaks to the maturing of the profession. However, defining program outcomes in terms of 
content taxonomies flies in the face of emerging trends toward active and discovery-based 
teaching and learning techniques (be it called “hands-on”, “project-centric”, or “self-paced”). 
 
One criticism4 of active or discovery-based learning approaches is that they are not the most 
cost-effective modality for transmitting information. To say it directly, an instructor can cover 
far more content in a traditional lecture format than in a project (or other applied) format. In light 
of recent pervasive budget pressures in higher education, the ability to cover more with less for 
more customers (students) is a practical reality. A second criticism of the active approach is that 
individual assessment is difficult as project work is typically done in teams. Further, it is 
necessary for an instructor to continuously monitor class progress as a whole toward learning 
outcomes, which is complex in an environment where team progress evolves distinctly and 
nonlinearly. Teams do not learn at the same rate, go about applied work in the same way, and 
come upon the hoped-for “aha” moment at the same time. The authors believe hybrid 
pedagogical approaches such as scaffolding or the Software Enterprise5,6 are the best ways to 
address this issue. 
 
Concept maps7 may be a tool that can help formative and summative assessment related to active 
learning. Concept maps are not classic assessment mechanisms like assignments, labs, and 
exams. Concept maps offer an alternative assessment tool that can be used to show that a student 
has acquired knowledge, and can organize that knowledge into an evolving structure. The ability 



to evolve is pedagogy independent and content “volume” independent. That is, it is not as 
important how much “stuff” the student learns or by which method s/he learns it, it is more 
important that the foundation of that knowledge is organized so it may be extended as the student 
matures. Concept maps are a formative tool educators may use to determine if the student is on a 
proper learning trajectory. 
 
Concept maps have been around for some time and have been employed in a number of 
disciplines, so what is unique about their application in computing sciences? Computing sciences 
are relatively immature compared to traditional STEM disciplines, and therefore there is still a 
lot of debate about what content is appropriate for 7-12th grade students and lower-division 
undergraduates. Computing sciences are also fast-moving disciplines. The ability to keep 
curriculum content current is a slippery slope for educators. Worse, for students, the technologies 
they may learn in their freshman class may be obsolete by their senior (junior? sophomore?) 
year. Therefore it is imperative to consider how students come to understand computing concepts 
and rapidly assimilate new technologies from a stable knowledge framework. 
 
2  Concept Maps 
 
Concept maps are a tool for organizing knowledge in a graphical format7. They consist of 
concepts shown as nodes in a graph, and (labeled) relations between concepts shown as arcs. 
Generally, a label is a word or group of words, and sometimes it can also have mathematical 
symbols like + or %. Propositions are used as a statement about some concept, they help in 
providing a meaningful relationship between concepts by connecting them using linking words 
or phrases. Figure 1 shows example maps relating the concepts of province and state. The map 
on the left defines a similarity relation between the two, while the map on the right introduces a 
new concept, or organizing node, to define an intermediary through which the origin concepts 
are related. 
 

 
Figure 1. Sample concept maps  

 
Concept maps are quite similar to mind maps8, though the context of application is different. 
Mind mapping activities are often done during discovery, where one is trying to understand a 
new domain. As examples, students may create a mind map to diagram comprehension of 
reading a textbook chapter, or business analysts might create a mind map as part of an idea 
generation or business modeling activity during requirements elicitation. Concept mapping, at 
least in our context, is an activity that attempts to reflect the structural aspects of a student’s 
evolving conceptual understanding. Note in this description that we do not say that concept maps 
themselves are an assessment of any kind; indeed they can be interpreted in many ways. For 
instance, student teams might use concept maps to bring to light differences in conceptual 
understanding when working on a collaborative assignment or project. Concept map assessment 



requires a process of interpreting the “goodness” or “badness” of a concept map with respect to 
some expectation or goal, and may be used in a formative or summative assessment process. 
Given the visual and subjective nature of concept maps, it is critical for an educator to explicitly 
define the assessment process.  

 
2.1  Concept Maps and the Software Enterprise 
 
We introduced concept map evaluation as part of the Software Enterprise at Arizona State 
University. The Software Enterprise is described in several other papers5,6 so here we highlight 
only the relevant aspects. The Enterprise is a pedagogical model that requires students to perform 
five time-bound learning phases: Preparation, Dissemination, Practice, Project, and Reflection. 
Preparation is a pre-class meeting activity, such as reading or brainstorming or researching, 
usually concluding with an online quiz. Dissemination is a traditional class meeting time where 
the instructor emphasizes content through lecture or discussion. Practice is a collaborative lab 
activity, and Project is the application of the concept in the context of a scalable project. 
Reflection is an activity that ideally occurs throughout the phases for a given module, though in 
practice we tend to require students to post reflections to an e-portfolio after the Practice activity 
and again after the Project activity. The key features of the Enterprise pedagogy are the 
modularization of the course content, and the proximity in time in which the learning phases of a 
module are conducted; three weeks elapse from the time a student is exposed to a new concept to 
the time when they are asked to implement and reflect on it in a scalable project. The intent is to 
immediately contextualize the learning and gain exposure to the external forces that may distort 
its application in that context.  

 
The Software Enterprise is not a pure active or project-based pedagogy, but nonetheless these are 
the most significant aspects. A ramification of employing this pedagogy is that the instructor 
simply cannot cover the same volume of content as s/he might in a traditional class (lecture + 
homework). The expected benefit is that somehow the students will learn the concepts better, in 
the sense they are learned in context. This contextual learning, our argument goes, should lead to 
1) rapid integration into the workforce upon graduation5, and 2) better structural foundation of 
software engineering knowledge that will evolve in an orderly way even after graduation. That 
is, the students understand less “stuff” but understand it in a way that is deeper and better 
organized so as to be better prepared to assimilate new and changing conceptual information, a 
requirement in the computing sciences. Concept map evaluation was utilized to try and assess 
this second benefit of contextualized learning. 

 
2.2  Creating Concept Maps 
 
We used the Cmap tool from the Florida Institute for Human & Machine Cognition (IHMC7) 
Software Enterprise students were asked to create concept maps from a template. The scaffold 
concept maps had nodes corresponding to the concepts to be covered in the coming semester. 
Students were asked to organize these concepts by defining relations between concepts. Student 
were allowed to introduce new nodes (aggregators or organizing nodes) in a different color 
(green). The map authoring process allowed for additional annotations such as capitalization to 



represent link strength (capitalized labels represent stronger relationships) and directionality of 
relations (arrows). Figure 2 shows an example map from a Software Enterprise student. 
 

 
 
Figure 2. Example concept map from a software enterprise student. 
 
The methodology was a pre-post process defined as follows: 

1. At the beginning of the semester, students were given a lab where they were asked to 
create a concept map from a scaffold map.  

2. Students were asked to arrange the concepts in a manner that best reflected their 
understanding of the concepts.  

3. Students repeated the lab at the end of the semester, 15 weeks later, using the same 
scaffold concept map and under the same directions. They were not permitted to 
reference their concept maps from the beginning of the semester. 

 
We explore ways to assess concept maps in the next section. 
 
3  Assessing Concept Maps 
 
The literature contains significant discussion of using concept maps for assessment (see Journal 
of Research in Science Teaching, December 1990), examples of software tools and algorithms 
for assessment8,9,10, and applications in STEM disciplines11,12,13. 
 
There are multiple things to consider when assessing concept maps – what to look at, what the 
output of the process is (quantitative or qualitative, formative or summative), and how to assign 
“goodness” to it. McClure, Sonak, and Suen (1999) conducted a study of 6 scoring techniques14, 
and categorized 3 ways of describing what to look at: 
 
1. holistic – a rater examines the concept map as a whole and awards a score from 0 to 10 
2. relational – a rater examines individual propositions and scores them each between 0 and 3 

based on appropriateness 
3. structural – a rater examines hierarchical structures and cross links to evaluate concept 

organization 
 



These approaches differ in what they ask an evaluator to focus on, and also suggest a quantitative 
score be assigned based on rubrics. The authors also presented modified versions of these that 
compared them against a master (expert) map. 
 
Using this framework as a reference model, we believe that holistic and relational approaches 
made sense but defining rubrics with quantitative scores seemed somewhat arbitrary. We did not 
feel we had sufficient experience with concept maps to define rubrics and attach scoring criteria. 
Further, it was not the intent of the assessment exercise to assign grades to students, instead our 
goal was to determine if the Enterprise pedagogical model was achieving its goal of accelerating 
student preparedness for the workforce. Finally, we first started down an assessment process path 
of using automated graph evaluation algorithms, but ended up relying on expert evaluation by 
humans instead of machine evaluation (automated evaluation remains ongoing work). We 
defined an assessment process addressing the question “is the student organizing and evolving 
knowledge in a way that shows progression towards a maturing software professional?”  
 
Consider an example of a science class. Upon entering the class, students would certainly 
understand the concept of temperature. Further, they might understand volume from using things 
like measuring cups. They might even understand the notion of gases under pressure from 
blowing up balloons. But, they would not likely understand the relationships among these 
concepts. As a result these nodes would probably not be linked in their concept maps. They 
would however, be linked in the instructor’s concept map. As the course progresses, we would 
expect that the relationships among these items would be learned and linked in the student’s 
map. As a result, her concept map would begin to resemble that of her teacher’s. Further, as all 
the students approximate the canonical model of their instructor, they will become more similar 
to each other. Indeed research has shown that students with knowledge structures most similar to 
their instructor tend to earn better grades in class15. 
 
From the Software Enterprise perspective, students entering the Enterprise (start of their junior 
year) would have an understanding of basic computing and software development concepts – 
discrete math, data structures, programming in a small number of languages, etc. Rudimentary 
software engineering concepts, such as writing test harnesses, structuring and documenting code, 
procedural and/or object-oriented design, and problem understanding have been introduced but 
are often not the primary learning objectives in lower division courses. The upper division focus 
in the Software Enterprise will, we hope, accelerate their contextualized understanding of these 
concepts and the more advanced concepts upon which they build – Software Maintenance, 
Validation & Verification, Software Architecture, and Requirements Analysis. The students’ 
concept maps should exhibit an arrangement of these concepts that is on an evolutionary 
trajectory toward that of a software professional.  
 
Concept map evaluation may be made stronger with the presence of discipline-specific metadata 
to inform algorithms. The algorithms may be made more intelligent by not only looking 
structurally at the map but semantically. Understanding of the concepts and the relationships – 
how closely they are related, relevant or correct – can lead to deeper evaluation of constructs. For 
example, one may be able to localize areas of concern within a large concept map, identifying 
areas where the structure is sound (implying a well-learned concept) but in fact the relationships 
are incorrect. These areas would be places where the educator may need to help the student 



“unlearn” an incorrect formation and relearn the proper one. This is just one example. To 
illuminate the idea further, we give a brief example from one of our software engineering 
courses. 
 
Figure 3 shows an example concept map generated by a senior student at the beginning of a 
software project management class. The student was given a set of concepts and asked to arrange 
them in a graph and label relationships. Relationship labels were not pre-specified, and capital 
letters are used to indicate a stronger relationship than lowercase letters. New nodes could be 
introduced if the student feels it enhances the representation. This network, despite having 
disconnected components is actually fairly strong structurally. It introduces new central nodes 
(Development Process and Process Components) that were not part of the scaffolding. However, 
an experienced software engineer may have some issues with some of the structures based on the 
relationships themselves. For example, why are SCRUM and Agile methods not connected? Risk  
Management is more than just a Process Component based on contingency planning. Software 
Maintenance does not “ensure correct functionality” for Testing, and so on. One could look at 
the sub-graphs here and like the structure, but would need to evaluate semantically to see if those 
structures made sense. 
 
4  Assessment Protocol and Results 
 
Our assessment protocol was as follows: 

Figure 3. Software Process and Project Management concept map  



 
1. Expert evaluators were recruited from the software engineering faculty. 
2. The evaluators were given a short pre-briefing that included reviewing the student exercise 

(see student create map protocol above), and some description of what a concept map is and 
what it should capture. This did not include any rubrics or heuristics for evaluation however. 

3. The evaluators were asked to visit a website that had two rating tasks defined for each 
evaluator. 
a. The tasks were identical, but with different data sets.  

i. The first data set contained concept maps from junior-level students, the second 
from seniors.  

ii. Pre and post maps were included in the same data set, so in effect each student 
had two maps present in a given data set. 

iii. Concept maps from former students who were now working in industry were 
added to each data set (4 maps for the juniors, 3 maps for the seniors). These 
alumni had 2-4 years of professional experience. 

iv. Identification information was anonymized.  
b. The evaluator was asked to ordinal rank each data set using an insertion sort-like process. 

The evaluator was shown maps in a random order, one per screen at a time, and provided 
a tool to place it in a ranked list. 

 
This protocol was designed to measure the knowledge organization trajectory. As a single data 
set included both the pre and post map, with the hypothesis that a maturing trajectory of 
knowledge organization would be shown by each student’s post map being ranked higher than 
her/his pre map. Of course the protocol design is not perfect. For one it does not even attempt to 
quantify the difference between a student’s pre and post map. It also does not set a target 
threshold for “goodness” of a student’s maps. Again, this goes back to the discussion on 
quantitatively scoring concept maps in this space; we do not feel we have the experience or a 
significant enough data set to try and normalize a scoring function for the maps. 
 
However we still wanted to measure whether our students were converging towards the 
knowledge maturity shown by recent college graduates, as accelerating the preparation of 
students for the workforce is as explicit goal of the Software Enterprise. So we modified the 
protocol by asking alumni to create maps for each data set, and seeded these maps in the data 
sets under anonymous ids. It is our intent to evaluate student maps against these maps for 
evolving similarity, but our concept map similarity engine is not yet complete. 
 
The project recently conducted its first round of data collection from 18 students in two data sets. 
The senior student data set had a total of 11 students and 26 concept maps (2 per student plus 4 
for alumni) while the juniors had a total of 7 students and 17 concept maps (3 alumni maps). 
While these data sets are small, we see it as a benefit for our first evaluation as more than this 
number of maps may bias the evaluation process from rater exhaustion. The results were 
compiled in a spreadsheet showing the raw ranking and also the relative position for each student 
by each rater. The results showed that: 
 
1. The raters were generally consistent on most students, where consistency means they agreed 

on the trajectory of the student but not necessarily the magnitude. In the senior dataset the 



expert raters were consistent for 8 of the 11 students. Of the 3 inconsistent students, 2 were 
significant inconsistencies. In the junior dataset the raters were consistent for 5 of the 7 
students with 1 significant inconsistency. This is a positive result as it shows that expert 
raters are generally consistent with only a 20 minute pre-briefing of the exercise. 

2. The alumni maps do not have trajectory information, but we note that the rankings for them 
were generally in the same neighborhood for the junior concept maps but not so for 2 of the 4 
senior maps. In fact in the senior maps the alumni rankings were clustered around the median 
of the rankings for the most part, while in the junior rankings the alumni did much better (as 
expected). A possible explanation for this is that our junior concept map is based on content 
more closely related to best practices in software development (for example, unit testing, 
configuration management, etc.) while the senior concept map centers around the broader 
software process, namely requirements and project/process management. We know the 
alumni who participated and they are all working industry jobs in which they do software 
development (coding) on a daily basis but are not primarily responsible for gathering 
requirements or managing projects. It would be useful to include more seasoned engineers in 
a future study. 

3. Students generally stay in a consistent position relative to each other, though there are a few 
exceptions. That is, if a student produced one of the better pre maps, then s/he is likely to 
produce one of the better post maps. This is not unsurprising. 

4. While 1-3 are generally positive results, we had the disappointing result that each rater 
evaluated 8 students as improving from pre to post assessment, and 10 students not 
improving. 3 of the 10 students not showing improvement were essentially ranked in the 
same place (neighboring slots in the ranking) and 1 of the improving students, for an adjusted 
tally of 7 students improving and 7 students not improving. This is a disappointing result as it 
does not validate the hypothesis that trajectories should show improvement.  

 
Although there are some positive takeaways from our first evaluation pilot, we had the 
disappointment that the primary hypothesis we were testing, trajectory of organizational 
knowledge should improve, was not validated by the pilot study. Further, it is difficult to discern 
from the assessment process exactly why the trajectory was not improving in a particular student. 
However, the experience did reinforce our belief that concept maps are a potentially valuable 
method for assessing whether students are building conceptual knowledge of the field in an 
organized, maturing way. We recognize that the protocol described in this paper should be 
validated against other forms of assessment, and that there are aspects of the exercise design 
(level of scaffolding, amount of rater training or pre-briefing, etc.) that require further 
investigation. 
 
5  Summary and Future Work 
 
In this paper we motivate the need for evaluating students’ organization of disciplinary concepts 
and suggest it is as important if not more important than the volume of content they are exposed 
to in their software engineering classes. Indeed, in a discipline where the half-life of content is 
perhaps the shortest of any STEM area due to its newness and rapid technological change, one 
can argue that a strong organizational foundation is key to assimilating and evolving with the 
discipline. To this end we have incorporated concept maps as an assessment tool in our upper-
division project-based Software Enterprise curriculum. Concept maps reify students’ organizing 



principles of the material learned in context. At present we employ this method to evaluate the 
student only as a resulting artifact of the pedagogy; future work may include creating formative 
and perhaps self- assessment processes to assist students in organizing knowledge better. 
Concept maps may also one day form a basis for summative assessment at the course or program 
level, though at present the authors do not feel they have the significant experience necessary to 
conduct such a process. 
 
This paper also contributes a unique ranking-based assessment process that focuses less on 
student understanding at a particular point in time but instead on the student’s trajectory of 
learning. Again, this process should be adaptable to formative-style assessment. The current 
assessment requires expert evaluation however, which itself introduces bias. Our current research 
activities include developing custom concept map similarity algorithms that can be automated 
against larger data sets to help diffuse any bias while also making it easier to evaluate concept 
maps on a regular basis. We plan to use these similarity measures to evaluate the convergence of 
student maps toward those of alumni as per the goal of the Software Enterprise. We have also 
collected additional datasets that await evaluation to see if our initial results are repeatable or 
merely an anomaly. 
 
Sheppard et al.16 suggests engineering education transform to a model more like medical 
education, where theory and practice are blended through practice-oriented techniques. The 
Software Enterprise courses we are applying this method in today are compelling because 
project-based learning sacrifices “coverage” for deeper applied understanding. A concern when 
switching from a transmission-based approach (lecture) to a “pedagogy of engagement” such as 
this is whether you can “cover enough stuff”17.  A student who has learned through project-based 
pedagogy, instead of by traditional lecture, may not be exposed to as much content but hopefully 
has a deeper framework of understanding. While concept maps may not assess how well a 
student can apply what s/he has learned, they can assess whether the conceptual knowledge 
gained is a foundation by which additional concepts may readily be integrated. 
 
But how does one measure how well? Certainly traditional assessment mechanisms attempt to do 
this, but it is difficult to map out a student’s learning trajectory using these methods. One might 
conduct pre and post assessments, but these are awkward in upper division curricula as one 
would not expect a student to perform well on a pre-assessment with concepts in which they are 
not familiar. Portfolios hold some promise, and these are also being introduced in the Software 
Enterprise. Concept maps are ideal for addressing one of the key questions – even if students are 
not getting as much “stuff,” are they getting it in such a way that it is organized into a solid 
foundation upon which new knowledge may be added? 
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