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Typically, mechanics education in engineering schools focuses on communicating explicit content 
to students, but deemphasizes the critical thought that underlies the discipline of mechanics.  We 
give examples of the failure of students to apply basic principles of mechanics in solving 
problems.  We develop assessment tools to measure critical thinking in student work, and how 
well mechanics textbooks engage students in critical analysis.  Both tools focus on the treatment 
of three criteria that we judge to be fundamental, but which are commonly overlooked or 
undervalued – completeness of free body diagrams, consideration of physical dimension, and 
careful use of coordinates and sign conventions.  Data collected from employing our assessment 
tools indicates that most of the time, students omit or misunderstand at least one critical idea 
when solving a problem, even when they obtain a correct answer.  We also found that most of the 
textbooks surveyed had at least one major shortcoming pertaining to our criteria.  Mechanics 
educators should vigorously emphasize fundamental aspects of mechanics, such as those that 
we suggest here, as a necessary (though insufficient) step to improve the ability of students to 
think critically and solve problems independently. 

 
1. Introduction 
 
Rooting Mechanics Education in Mechanics.  The science of Mechanics provides the 

educational foundation for nearly all branches of engineering, due the importance of both (1) its 

explicit content and subject matter (e.g. the behavior of mechanisms and structures), and (2) its 

embodiment of analysis and rational thought (e.g. building equations, based on rational models, 

that describe physical phenomena).  Our experience indicates that students and instructors in 

mechanics courses emphasize the explicit content, but at the expense of developing analytical 

technique.  This view echoes Schafersman, who, though not a mechanician, writes of the need 

to develop critical thinking in education: 
Perhaps you can now see the problem. All education consists of transmitting to students two 
different things: (1) the subject matter or discipline content of the course ("what to think"), and (2) 
the correct way to understand and evaluate this subject matter ("how to think"). We do an 
excellent job of transmitting the content of our respective academic disciplines, but we often fail to 
teach students how to think effectively about this subject matter, that is, how to properly 
understand and evaluate it. [1] 

 
While in the short run the narrower focus on content enables students to (sometimes) get 

answers to some problems fairly quickly, students often lack even a basic working knowledge of 

how to apply principles of mechanics to approach general problems – even problems that 
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require only technique that they have already learned.  We proffer that such shortcomings often 

result from the failure to carefully address fundamentals of mechanics in mechanics pedagogy4.  

Such fundamentals include the completeness of free body diagrams, the consideration of 

physical dimension, and the careful definition and use of coordinates and sign conventions.  

 

Consider, for example, a student who incorrectly derives the equation of an oscillating mass as 

.  The sign error in this equation may be, in the student’s mind, simply due to a 

minor algebraic error that is of little consequence – “it’s just a sign.”  But it is likely that the 

source of this error lies not in careless algebra, but in misunderstanding, or not perceiving, the 

role of the coordinate x and the need to define it precisely with a sign convention.  In this light, 

the error was arguably conceptual.  Resolving this problem at its root – not just “fixing” the sign, 

but really establishing a proper coordinate – would likely lead to a deeper understanding that 

would be transferable to many other problems. 

0=− kxxm&&

 
One approach to correcting this error is to identify its context.  Fortunately, mechanics naturally 

lends itself to establishing well-defined categories that may be used to characterize various 

elements of a given problem.  It is well accepted that a given mechanics problem comprises 

three basic elements: (1) Kinematics (geometrical properties), (2) Laws of Mechanics (balance 

laws, such as Newton’s Laws), and (3) Constitutive Laws (material properties).  In their textbook 

An Introduction to Statics and Dynamics, Ruina and Pratrap refer to these elements as the 

“Three Pillars of Mechanics” [2].  They present the pillars as a fundamental concept in the 

introductory chapter, and repeatedly refer to them throughout the text5.  The three pillars 

constitute a useful, consistent, and philosophically grounded framework with which to formulate 

and solve essentially all problems.  We argue that all students in mechanics should learn to 

formulate and solve problems according to this framework. 

 

Critical Thinking.  By critical thinking, we mean a systematic approach to problem solving, 

including complete and well-conceived problem formulation, generation of a solution, and 

careful assessment of the solution.   While this definition can be applied across a wide range of 

disciplines, it is somewhat narrow and operational.  Many other definitions abound.  Further 

discussion and ideas may be found in Schafersman [2], Gunnink and Bernhardt [3], Bean [4], 
                                                 
4 Perhaps one reason for this is shortcoming in mechanics education is that in typical engineering programs, 
mechanics is taught as a service for degree-bearing disciplines, such as Mechanical Engineering and Civil 
Engineering.  Few universities offer undergraduate degrees in the discipline of Mechanics. 
5 In introductory Statics and Dynamics, bodies of interest are often assumed rigid.  In such cases, only pillars (1) and 
(2) are applicable, although pillar (3) is implicitly applied if one views rigidity as a limiting case of constitutive behavior. 



Kanaoka [5], and Paul and Elder [6].  Several organizations that maintain related material are 

the Foundation for Critical Thinking [6], and the Critical Thinking and Pedagogy group at 

National University of Singapore [7].  Also, The Scientific Reasoning Research Institute is a 

research organization at the University of Massachusetts-Amherst that has produced literature 

regarding critical thinking in physics and mathematics education [8]. 

 

Employing our definition, critical thinking in mechanics refers specifically to critical thinking 

applied to mechanics problems, using the framework of the Three Pillars.  In this sense, was the 

student who wrote the equation 0=− kxxm&&  thinking critically?  We provide a brief commentary 

below. 
The equation is correctly dimensionally balanced, which indicates at least partially correct 
application of Newton’s 2nd Law, which is included in the 2nd Pillar.  On the other hand, as was 
suggested previously, the sign error may indicate a conceptual error in establishing a coordinate, 
which is associated with the 1st Pillar.  Even if this is the case, perhaps the student was thinking 
critically in the sense that he or she applied the Pillar of Kinematics, but did so erroneously.  
Finally, the student would be thinking critically if he or she examined the resulting exponential 
solutions, and realized that these solutions do not represent the expected oscillatory motion.  The 
pinnacle of critical thought would be reached if the student used this realization to re-examine the 
entire problem solution, identify the error, and re-solve the problem correctly. 

 
2. The Breakdown of Critical Thinking in Mechanics Education 
 
In this section we examine evidence from situations in mechanics education in which students 

fail to employ critical thinking, and in which pedagogical materials fail to engage students in 

critical thinking.  We believe that these examples are representative of typical situations 

encountered by students and instructors at many institutions, and that they provide a clear and 

accurate assessment of some fundamental issues that must be addressed. 

 

Anecdotes from Student Questions.  In the last two years or so, several of our former 

students have visited us to ask questions pertaining to their current course projects.  Strikingly, 

although their questions varied in topic, all questions fit a disturbing pattern.  In each case the 

students began by saying “we just have one question,” implying that only one ‘simple’ obstacle 

stood in the way of completing their project.  After a few minutes of discussion, and discovering 

that their question was not so simple, and that it led to new questions, the students would 

concede that only a week remained in which to complete the final project.  Seeing that a week 

was not nearly enough time to adequately address their new realizations, the students would 

declare that their initial, though incorrect, assessment of the problem would be “good enough,” 

and that furthermore, they were sure that their instructor did not intend the problem to be as 



complicated as it now appeared to be.  Below is an example that recounts one specific case, 

told from the point of view of Prof. Papadopoulos, paraphrased and slightly modified for brevity 

and simplicity: 
Two former students came to ask for some help with a class project from another instructor’s 
class.  Their project was to analyze the ability of a hook (used by a crane) to raise prefabricated 
walls upright.  The hook was approximately J-shaped, with a lip.  The hook would grip one end of 
the wall and lift, while the other end of the wall remained in contact with the ground. 
 
The students said, “We just have one question.  Can we assume that the hook is resisting all of 
the force?”  I replied, “All of what force?  Your question needs to be more precisely stated.”   After 
pursuing this clarification for a few minutes, I was able to draw out from them that they had really 
meant to ask, “Can we assume that the hook supports the entire weight of the wall?”  I said, 
“Draw a free body diagram, and you tell me.  For simplicity, assume that the wall is flat on the 
ground and is just about to have one end lifted.” 
 
After more prodding than should have been necessary for these students, who had completed 
Strength of Materials (in my class, no less!), one of them drew a simple FBD of the wall, and 
realized that it could be viewed as a uniform, simply-supported beam.  The hook, therefore, would 
support half the weight of the wall, W/2. 
 
We were only just beginning.  I then asked the students to draw a FBD of the hook itself, detailing 
how it carried the half-weight of the wall.  The students proposed an upward force of the cable, 
equaling W/2, but they had some difficulty in seeing that, in order to balance moments, the force 
of the wall on the hook was not simply a single downward force.  Rather, I explained, a simple 
model would be to assume that the wall contacted the hook at two places, on adjacent faces, 
without friction, rendering the hook a 3-force body, obliquely oriented (see Figure 1). 
 

 
 Figure 1.  Sketches of hook lifting wall, and suggested Free Body Diagrams. 

 
Beyond these points, we discussed that the static analysis was only a prerequisite to their project.  
The students readily agreed they needed to analyze the stresses, and suggested that they could 
apply ideas from Strength of Materials, such as the theories for axial bars and beams.  I 
commended them for appealing to this line of reasoning, but I cautioned that these approaches 
were limited, and would be least useful precisely at the locations where the stresses may be most 
critical.  I mentioned the finite element method, with which neither student had experience, and I 
also explained more about the importance of properly modeling the boundary conditions. 
 
By this point, we had spent about an hour, and the students appeared somber.  They told me that 
they thought that my suggestions were correct, but that they didn’t have time to try tackling any of 
them, save for perhaps using the half-weight of the wall, instead of the full weight, in their 
originally intended analysis.  They told me not to worry, because they were sure that what they 



were already doing would be sufficient to satisfy the expectations of their instructor.  I have no 
idea how they actually solved their problem, and decided ‘not to ask, not to tell.’ 

 
Regrettably, this example, which is representative of several others, reveals a serious lack of 

critical thinking on the part of our students.  The imperative to address this problem lies well 

beyond academic perfectionism.  The hook project was ‘real-world,’ and some of its essential 

analysis was amenable to techniques that the students surely knew.  In this case, the static 

analysis of a simply-supported member was applicable.  Had the students been given a simply-

supported beam to analyze, they undoubtedly would have analyzed it correctly.  But in a context 

in which the objects at hand were not so literally defined, the students could not apply, from 

scratch, a simple free body analysis; had they attempted this seriously, they would have at least 

discovered the answer to their immediate question. 

 

What are the reasons for these lapses in critical thinking, and how can educators address this 

problem?  Complete and definitive answers are likely to prove elusive, as a number of factors – 

for example, prior mechanics education, innate student ability or interest, demanding schedules 

and pressures, quality of instruction – are all influential, and are likely to vary significantly from 

case to case. 

 

Nevertheless, we contend that some definite pedagogical improvements can be advanced, and 

that while limited in scope, they are necessary if we are to seriously engage our students in 

critical thinking.  In the next two sub-sections we present tools to assess specific aspects of 

student work and assessments of some textbooks that illuminate some areas where effort 

should be placed. 

 

Quantitative Measures of Student Performance.  We identified three specific criteria against 

which to examine student homework: (1) completeness and correctness of Free Body Diagrams 

(FBD), (2) incorporating proper physical units (UNITS), and (3) proper use of vectors, 

coordinates, and sign conventions (VCS).  Agreeably, the selection of these criteria is 

somewhat subjective, but we believe that they are, at a minimum, strong negative indicators – 

that is, students who consistently under-perform on these concepts are likely to have difficulty 

applying fundamental principles to new problems.  They may not be consistent positive 

indicators, as some students will be able to learn how to narrowly satisfy the criteria without true 

critical engagement.  Nevertheless, we contend that emphasizing these criteria in instruction, 

will, on average, improve students’ overall ability in mechanics. 



 

We developed a protocol to evaluate student performance on specific homework problems.  For 

each problem, the instructor or grader would assign a sub-score for each criterion, from 0 – 3: 

 
 Free Body Diagrams (FBD)     0 1 2 3 
 Physical Units (UNITS)     0 1 2 3 
 Vectors, Coordinates, Sign Conventions (VCS)  0 1 2 3 
 
where the sub-scores correspond to the following meanings: 

  
0:  serious error in final answer, and is attributed to poor application of criterion 
1:  serious error in final answer, but not attributed to application of criterion 
2:  final answer essentially correct, despite poor application of criterion 
3:  final answer essentially correct, and criterion was applied correctly 

 
A more detailed set of rules was established to determine each sub-score (see Appendix A). 

 

The total score p for a given problem is the sum of the three sub-scores, i.e. p = z1+ z2+ z3, 

where zi ∈  {0, 1, 2, 3}.  The resulting set of possible scores is {0, 1, 2, 3, 6, 7, 8, 9}.  Scores of 4 

and 5 are not possible, for if p {4, 5}, there must exist sub-scores z∈ i and zj such that 

simultaneously, zi∈  {0, 1}, and zj∈  {2, 3}.  However, this cannot occur, because if zi∈  {0, 1} the 

final answer was incorrect; yet if zj∈  {2, 3}, the final answer was correct.  Clearly, these two 

cases cannot occur simultaneously.  Although this dichotomy rewards the attainment of a 

correct answer, students who obtain correct answers for correct reasons are distinguished from 

those who get correct answers from incorrect reasons. 

 

The dichotomy of sub-scores between {0, 1} and sub-scores in {2, 3} also implies that each 

score p arises from a unique triplet of sub-scores, though the ordering of the sub-scores is not 

unique.  For example, a score p = 7 can be realized as (2 + 2 + 3) or (2 + 3 + 2), but 7 cannot be 

realized as (1 + 3 + 3); in other words, 7 can be realized only from two 2’s and one 3.  Thus, 

each score represents a unique level of total quality, but a given score does not uniquely 

indicate the level of quality derived from each individual criterion.  As a result, this scoring 

system provides a monotonic scale against which to measure overall quality of work, but does 

not favor the importance of one criterion over another. 

 

We employed this assessment tool to five different homework problems from Dynamics or 

Strength of Materials classes.  The average scores are reported in Table 1 (N is the number of 



homework papers evaluated (incidences); the total N = 105 arises from five distinct 

assignments). 

 

HW N FBD UNITS VCS TOTAL 
1 20 1.3 1.6 1.6 4.5 
2 19 1.7 1.7 1.5 4.9 
3 29 1.9 2.3 2.1 6.3 
4 29 1.0 1.5 1.9 4.4 
5 8 2.3 2.8 2.1 7.1 

NET 105 1.6 2.0 1.8 5.4 
 

Table 1.  Results of Homework Assessments, by Criterion, and by Homework Assignment. 

 
The results indicate, on average, a modest tendency for students to reach an acceptable final 

answer (the average score, 5.4, is greater than 4.5).  However, the average tendency is also for 

students to neglect or make a significant error in at least each criterion (each sub-score average 

is a full point below 3, the score that requires the execution of the criterion without significant 

error).  No single criterion emerges as an area of particular strength or weakness. 

 

We can consolidate the data across all criteria and all assignments to reveal how often a correct 

(or incorrect) reason correlated to a correct (or incorrect) answer.  An explanation for how the 

data was recompiled is in Appendix A, but roughly speaking, a ‘correct reason’ correlates to the 

maximum sub-score for a given criterion.  “Immeasurable Reason” refers to incorrect answers 

that we not directly attributed to any of the three basic criteria (e.g. a student who made no 

sensible progress).  Also, the total number of total incidences here is 315, which is 3 times the 

number (105) of problems studied (recall each problem is scored against 3 distinct criteria).   

 
N = 3 x 105 = 315 Correct Answer Incorrect Total 

Correct Reason       57    (18.1%)       7     (2.2%)   64   (21.3%) 
Incorrect Reason     153    (48.6%)     29     (9.2%) 
Immeasurable Reason      69    (21.9%) 

251   (79.7%) 

Total     210    (66.7%)   105    (33.3%)   315 
 

Table 2.  Correlation between Correct Reasons and Correct Answers. 

Note that the tabulation generating Table 2 gives a generous impression of student work.  For 

example, a student who arrived at a correct answer on the basis of 2 correct reasons (say FBD 

and VCS), but one incorrect reason (say UNITS), would contribute 2 tallies for “correct reason, 

correct answer,” and one tally for “incorrect reason, correct answer.”  (A strict scoring system, 



requiring that each reason be correct for each correct answer, would identify this student 

entirely in the category of “incorrect reason, correct answer.”)  According to this tabulation, most 

incidences (210, 66.7%), represent correct answers, but also, most incidences (251, 79.7%) 

also represent incorrect or immeasurable reasoning (immeasurable reasoning likely indicates 

incorrect reasoning not explicitly measured here, such as trigonometry errors.) 

 

Analysis of Textbook Materials.  If students are to be challenged to consider precise aspects 

of mechanics reasoning, such as the criteria we identified, it follows that textbooks have a 

responsibility to present theory and problems commensurate with this level of detail.  We 

therefore evaluated several major textbooks, critiquing them on the basis of the same three 

criteria as with our student assessment: (1) FBD, (2) UNITS, and (3) VCS.  For simplicity, we 

restricted our evaluations to the standard first three chapters (or equivalent) of introductory 

Dynamics: Particle Kinematics, Particle Kinetics using Newton’s Law, and Particle Kinetics 

using Energy Methods.  For each category a score was given from 0 – 2, representing our 

general opinion of the book’s presentation of the criteria throughout the three chapters of under 

examination.  The scores were assigned as follows: 

 
0:  consistently little or improper presentation of criterion 
1:  inconsistent presentation of criterion 
2:  generally consistent and proper presentation of criterion  

 
In conducting the textbook evaluations, we did not exhaustively catalog every occurrence of 

each criterion.  Rather, we formed judgements by finding two or three key examples in each 

text, and then browsing the rest of the selected pages to get a sense of how representative the 

examples were.  An improved study would more exhaustively track each occurrence, and be 

evaluated by a panel of several people.  Nevertheless, even if our conclusions are flawed, we 

submit that we have established a useful protocol for examining textbooks. 

 
 Text FBD UNITS VCS 

Bedford/Fowler [9] 2 1 1 
Beer/Johnston/Clausen [10] 1.5 1 1 
Boresi/Schmidt [11] 1 0 1 
Hibbeler [12] 1 1 2 
Meriam/Kraige [13] 1.5 0 1 
Ruina/Pratrap [2] 2 2 2 

 
 
 
 
 
 
 
 
 

Table 3.  Textbook Assessment Results. 



Table 3 summarizes the results of the textbook evaluations.  The texts that were selected were 

those that were readily available to us.  Appendix B contains images of various selections that 

we examined, with further commentary. 

 
According to our assessment, most textbooks put forth free body diagrams that exclude some 

forces, particularly in problems concerning energy methods in which some forces may not enter 

into the calculations (see Appendix B, Figures B1 and B3).  Including all forces is imperative.  

Even forces that do no work, or that otherwise may not enter into a calculation, impose real, 

physical effects, such as enforcing constraints.  In some engineering situations, the examination 

of such forces is crucial.  Neglecting any force gives students an exit through which to escape 

considering and comprehending the true physical reality of the problem at hand, and allows 

them to pursue lines of thinking according to their own, likely flawed, intuition6.  Indeed, this is 

the root cause of why the students who were trying to analyze the J-hook (recounted above) 

had difficulty in even beginning their problem.  The exclusion of a force, even if it appears to be 

irrelevant, indicates that time and effort is not being committed to cultivating the complete 

understanding of the problem at hand. 

 

Next, we found that nearly all textbooks frequently exclude units, especially in intermediate 

calculations, although usually they are attached to the final answer (see Appendix B, Figure B2).  

Repetitious inclusion of the units, accompanied by emphatic comments, provides a valuable 

opportunity for the educator to lead the students to realize the power of the units (or more 

generally, physical dimension) to reveal insights and special properties of the underlying 

mechanics.  Students who develop the habit to consider and include units will be more disposed 

to critically assessing their own work, and ultimately, they will develop a habit of mind that will 

assist them in solving problems in more advanced subjects, such as fluid mechanics. 

 

The texts had mixed evaluations on the use of coordinates and sign conventions (see Appendix 

B, Figures B1 and B3).  Most consistently define sign conventions for summing forces and 

moments.  However, the senses for kinematic coordinates are often ambiguously sketched with 

double-headed or non-headed arrows.  A well-defined coordinate should have a single-headed 
                                                 
6 Physics educators have long perceived the tendency for students to follow their own intuition, rather than the actual 
dictates of the mechanics.  Several researchers have investigated how students’ preconceptions interfere with their 
ability to learn mechanics.  Two early works are Clement [14] and McDermott [15].  As this research developed, the 
Force Concept Inventory (FCI) emerged as a tool to measure students’ understandings or misunderstandings of how 
forces act on bodies (see Hestenes, et. al., [16]).  Recently an ASEE group has been formed to collect FCI data (see 
Gray et. al., [17]).  We contend that our recommendation for instructors to unfailingly construct complete Free Body 
Diagrams will assist students to overcome their incompatible preconceptions. 



arrow pointing away from a reference point, defining a positive direction or orientation.  This 

may seem fussy, and agreeably, merely using proper arrowheads without explanation or 

emphasis is useless.  The point is that the careful establishment of a coordinate, including its 

sense, should be impressed upon the student as a fundamental part of the solution of any 

problem, and that any careful approach should implicitly include the proper sketching of 

coordinate directions.  The presence of an ambiguously established coordinate is an indication 

that this discussion of coordinates has not occurred.  Such emphasis will hopefully prepare 

students for more advanced courses, such as Finite Element Analysis, in which a systematic set 

of coordinate definitions is required to formulate problems and interpret computed results. 

 
3. Conclusions and Future Work 
 
We have emphasized the need to train students in mechanics courses to think critically, 

grounding their problem-solving skills in the core ideas of mechanics itself.  We have also 

defined reasonable and practical measures that can be used to assess both student work and 

educational materials.  Our work shows that in general, students usually miss at least one 

critical element of a problem, even when they get the correct answer.  It is precisely this gap – 

between getting the right answer with faulty reasoning, and getting the right answer with correct 

reasoning – that must be filled if students are to become true problem solvers.  We have also 

demonstrated that in general, textbooks fall short in demanding critical thinking on the part of 

their student readers. 

 

We believe that the assessment tools that we present here are useful and innovative, but we 

also acknowledge their limitations.  For example, our homework assessments may not be 

repeatable.  Would other instructors, using our same protocol, give the same analysis of what is 

acceptably correct?  Indeed, the outcomes likely depend on the judgements of the evaluator.  

However, the assessment tool is likely to be effective for use by a given instructor. 

 

We also recognize that our assessment tool may not categorize student errors uniquely.   For 

example, is an incorrectly labeled force, say k vs. kx, an error in the free body diagram, or an 

error in the use of physical units?  Again, different evaluators may make different assessments, 

and perhaps further work could be done to catalogue and define various kinds of errors.  

Nevertheless, the overall assessment of how frequently students demonstrate proper reasoning 

would be reasonably invariant. 



Allowing, then, that our assessment tools and procedures are reasonable, we hope that their 

underlying substance – demanding complete free body diagrams, including physical units, and 

requiring careful definition and use of coordinate systems and sign conventions – will inform 

pedagogy in mechanics, so that educators and educational materials will emphasize these 

concepts.  In the future, we hope to use our assessment tools on a larger scale to determine, in 

fact, whether such pedagogical shifts would really improve students’ understanding of 

mechanics, and their ability to independently solve problems. 

 

Finally, addressing only the specific criteria that we discuss here may not lead to 

comprehensive improvement in students’ critical thinking skills.  We have focused on improving 

analytical technique and developing habits of mind, but perhaps we have missed some other 

influential concepts.  Moreover, in addition to our approach, other teaching strategies, such as 

writing exercises, assignments with structured iterations for feedback and revision, and design 

projects, will also help students to cultivate their critical thinking abilities. 

 

In the end, merely presenting the fundamentals of mechanics, even if done correctly, will be 

useless.  It will do little good, for example, to follow even our own suggestions, such as 

completing free body diagrams or sketching coordinates with single-headed arrows, if not 

accompanied by a deeper commitment to and insight into student learning.  Our real point is not 

simply to call for correcting details, but rather, to engender within mechanics pedagogy the well-

conceived and planned articulation of the concepts that underpin these details.  Without a 

serious attempt at this, we will be left with our current situation, so keenly described by 

Hestenes, et. al.,  
The implications could not be more serious.  Since the students have evidently not learned the 
most basic Newtonian concepts, they must have failed to comprehend most of the material in the 
course.  They have been forced to cope with the subject by rote memorization of isolated 
fragments and by carrying out meaningless tasks.  No wonder so many are repelled!  The few 
who are successful have done so by their own devices, the course and the teacher having 
supplied only the opportunity and perhaps inspiration. [16] 

 
We educators can more positively influence the learning of our students if we recognize that 

sound education requires a mutually engaged relationship between the instructor and the 

student, in which the educator perseveres in challenging the student to understand the subject 

matter critically, and the student will embrace this challenge as an opportunity for discovery, not 

as a snare which is to be escaped.  If we fail to do our part, as engineering educators, to create 

this engaged learning environment, we will have made no progress in attaining our goal of 

training students to think carefully and become independent problem solvers. 



Appendix A.  Evaluation Form for Assessment of Student Homework 

 
 

Use of CRITERION [FBD, Units, Coordinates, Vectors & Coordinates] 
 

CRITERION not used at all               Flag    Subcore 
 

serious error committed and is due to the absence of the FBD  1 0 
serious error committed, but not due to the absence of the FBD  2 1 
answer correctly obtained       3 2 

 
CRITERION present but incomplete or incorrect 
 

serious error committed and is due to the poor FBD   4 0 
serious error committed, but not due to the poor FBD   5 1 
answer correctly obtained       6 2 

 
CRITERION is present and essentially correct 
 

serious error committed       7 1 
no serious errors and answer correctly obtained    8 3 

 
 
 correct reason, correct answer  corresponds to Flag #8 
 incorrect reason, correct answer  corresponds to Flags #3 & #6 
 correct reason, incorrect answer  corresponds to Flag #7 
 incorrect reason, incorrect answer  corresponds to Flags #1 & #4 
 incorrect answer, immeasurable reason corresponds to Flags #2 & #5 



Appendix B.  Excerpts from Textbooks, and Commentary 
 

Figure B2.  In Problem 14.2, from 
Bedford and Fowler, the Free Body 
Diagrams and the basic setup of the 
equations are correct.   However, the 
physical units are dropped from all 
terms of the calculations, except for 
the final answer, in which the units are 
merely attached.  The simplicity of this 
problem makes it very amenable to 
including the units. 

Beginning students should be trained 
to include physical units for several 
reasons.  Students can gain practice 
in manipulating the various units, and 
thus become familiar with how they 
must interrelate.   Moreover, if 
students learn to balance units, they 
can use them to check for errors, 
such as raising numbers to wrong 
powers, or forgetting terms in the 
chain rule.  Finally, students who pay 
attention to physical units will learn 
more about the fundamental physical 
nature underlying the problem.  

Figure B1.  In Problem 15-18 
from Boresi and Schmidt, the 
sketch of the pendulum bob is not 
a true Free Body Diagram, 
because it does not include the 
tension.  Even though the tension 
does no work in this model, and 
thus does not enter into the 
calculations, the tension force 
should still be drawn, and the text 
should explicitly discuss that it is a 
force that does no work.  
Including the tension force and 
these remarks will impress upon 
the students the importance of 
considering all reasonable 
aspects of a problem, and will 
help them to analyze other 
problems in which certain forces 
may not be negligible. 
 
The sketch of the coordinate θ is 
drawn correctly, with a single-
headed arrow.  Since L is a 
parameter, it is correctly sketched 
with a double-headed arrow.  The 
variable h should have a single-
headed arrow, because it is not a 
fixed parameter. 

______________________________________________________________________________ 
 



Figure B3.  In Problem 14-11 
from Hibbeler, the first figure is 

pring 

unted 

 

 

intended to be a descriptive 
sketch, and as such, is 
appropriate.  But the second 
figure, intended to have a Free 
Body Diagram of the collar, 
omits the tension in the spring.  
Even though the work done by 
the spring on the collar can be 
calculated easily using the 
spring potential, the s
force should appear in the FBD 
to emphasize its presence, and 
impress upon the student that it 
is enforcing necessary 
conditions on the motion of the 
collar. 

In the second sketch, a good 
effort is made to define the 
stretch of the spring, s.  The 
double-headed arrow on sCB is 
arguably acceptable, if sCB is 
interpreted as a parameter.  
However, the stretch varies, 
and this should be acco
for by a proper coordinate s, 
signified with a single-headed 
arrow.  Then, sCB is the value of 
s at a particular location. 

Also, the energy equation 
really yields two roots for vC.  
The reported final answer, 
downward, is correct, but the 
reason to select the negative, 
rather than positive, root is not 
only omitted, but undermined 
by the comment that it is 
‘immaterial if the collar is 
moving up or down.’ 
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