MOTOR CONTROL USING “OFF-THE-SHELF” HARDWARE AND SOFTWARE

George A. Perdikaris, Engineering & Computer Science
University of Wisconsin-Parkside
900 Wood Road
Kenosha, WI 53144-2000

E-mail: perdikar@uwp.edu; Phone: (262) 595-2489; Fax: (262) 595-2114

Abstract

A method is presented for controlling an industrial motor plant by a personal microcomputer (PC)
using “off-the-shelf” hardware and software. The computer-controlled system prototype is designed
and simulated using MATLAB and Simulink, products of MathWorks, Inc.' The actual control
system is implemented in the laboratory using digital-to-analog converter (DAC) and encoder
interface boards made by Measurement Computing Corporation. The plant consists of an industrial
motor and drive made by the Bosch Rexroth Corporation. The computer-controlled system is run in
real time using the Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT) software,
also made by MathWorks, Inc. Computer simulation results are verified experimentally.

1. Introduction

Industrial automation incorporating computers is becoming increasingly important in the production
of goods and services. It is a highly sophisticated job to design and implement automation systems
that operate and coordinate modern manufacturing processes. Quite often, such systems involve the
application of computers to control the speed or position of the shaft of motors in real time.

The “spinning” of motors intelligently is fundamental to quality manufacturing. In the metal
processing industry, for instance, the doors of home appliances such as refrigerators, washers, and
dryers are formed out of steel, which is cut to size from large coils of metal and then pressed into
shape by large presses controlled precisely by computers. In paper, plastics, wood and other
industries, consumer products ranging from toilet paper and baby diapers to office furniture and
automobiles are also made by controlling motors by computers.

This paper presents a practical and systematic method for modeling, simulation, and real-time
control of an industrial motor plant by using a Pentium PC as host and target. The computer-
controlled system is implemented in real time without having to write programs in languages such as
C/C++ and/or other low-level programming languages like assembly. The interface (I/O) devices are
commercially available and relatively inexpensive.

Using MATLAB and Simulink with RTW and RTWT creates a single-computer environment for
prototyping and testing real-time systems. In this real-time development environment the PC is used
first to create models using Simulink blocks. After simulating a model with Simulink in normal
mode, executable code can be generated and run in real time with Simulink in external mode.

II. Computer Controlled Systems

A closed-loop digital control system is shown in the Simulink block diagram of Fig. 1. As can be
seen from the diagram, digital-to-analog converter (DAC) and incremental encoder or motor pulse
generator (MPG) interfaces have been assumed. Specifically, the output of the digital controller
(manipulation) is converted into analog form by the DAC before it can be communicated to the
analog plant. For the output, it is common to control the speed and/or position (displacement) of the

' MATLAB, Simulink, Real-Time Workshop , and Real-Time Windows Target are registered trademarks of
MathWorks, Inc.

shaft of a motor by using a transducer that converts the shaft rotation into pulses that can be read by
the computer.

A transducer that monitors motor speed every T seconds, where T is the control sampling time, is the
incremental encoder or MPG. The pulse generator also acts as a differentiator, because its signal is
proportional to the change in position from the previous sample. For instance, if the input to the
MPG represents position in radians (rad), the units of the MPG gain are pulses/rev = pulses/(2nrad).
Therefore, after differentiation, the velocity signal is (pulses/T). Specifically, a 5000 pulses/rev MPG
has a gain, K, given by

_ #pulses 5000(pulses)

=795.775 (pulses/rad
dt= " rev 2 (rad) (P)

The Simulink simulation diagram of Fig. 1 includes block models for the DAC and MPG interface
devices. These models account for the quantization effects due to the finite wordlength of the DAC,
and for the differentiation as well as the discretization effects of the MPG. Using such graphical
models, the wordlength and/or the input range of the DAC can be varied interactively and relevant
system responses can be observed graphically or the respective values can be “captured” in real time
and stored for further evaluation. The designer can also tune (interactively) controllers such as the
proportional-integral-derivative (PID), integral with proportional-derivative-feedback-plus-
feedforward (PDFF) — shown in Fig. 1, or other types of controllers [1][2].

III. The Laboratory Environment

The laboratory computer is a 450 MHz Pentium III running Windows 98. The PC is equipped with
DAC (Analog Output), and Encoder (Encoder Input) boards made by Measurement Computing
Corporation, formerly known as Computer Boards, Inc. The specific I/O boards used are the ISA-
bus models CIO-DAS1602/12 and CIO-QUADO2, respectively. The first is a 12-bit, bipolar,
ADC/DAC combination board while the second is a two-channel encoder input device used to
monitor the motor speed/position feedback.

The plant to be controlled is a 6-pole, brushless, direct-current (DC) servomotor with rated torque of
38 Nm and speed of 2700 RPM. The motor is powered by a matching sinusoidally-commutated,
pulse-width-modulated (PWM) servo drive with an integral current loop. Position, velocity, and
commutation feedback is provided by a high-resolution (2*' increments per revolution) feedback
device internal to the motor. Motor and drive are manufactured by the Bosch Rexroth Corporation.
It should be noted that for our case the encoder resolution was set at 4x1250=5,000 (pulses/rev).

The Pentium PC is used as both a host and target. This software environment allows one to design,
simulate, and test an application in both real time and non-real time. The PC is used with MATLAB
and Simulink to create graphical models using Simulink blocks. After creating a model and
simulating it with Simulink in the so-called “normal” mode, executable code can be generated with
the Real-Time Workshop (RTW), the Real-Time Windows Target (RTWT), and Microsoft’s Visual
C/C++ compiler using the Simulink “external” mode [3][4]. During real-time execution, the
Simulink model is used as a graphical user interface (GUI) for both signal visualization and
parameter tuning.

With the RTW, you can quickly generate efficient C code for discrete-time, continuous-time, and
hybrid systems. When used in conjunction with a rapid prototyping target such as the RTWT, the
RTW provides a practical and attractive real-time development environment for testing and
observing physical systems in various areas of application.

The RTWT uses a real-time kernel to ensure that the real-time application runs in real time. The real-
time kernel runs at CPU ring zero (kernel mode) and uses the built-in PC clock as its primary source
of time. The kernel intercepts the interrupt from the PC clock before the Windows operating system
receives it. This blocks any calls to the Windows operating system. The kernel uses the interrupt to
trigger the execution of the compiled model and give the real-time application the highest priority
available.

The real-time kernel interfaces and communicates with input/output (I/O) hardware using I/O driver
blocks. Analog-to-digital converter (ADC) or analog input (Al), DAC or analog output (AO), digital
input, and digital output blocks call the drivers for input and output. Drivers also run at CPU ring
zero. Communication between Simulink and the real-time application is through the Simulink
external mode interface module. This module talks directly to the real-time kernel and is used to start
the real-time application, change parameters, and retrieve scope data.

When running the model in real time, RTWT captures the sampled data from one or more input
channels, uses the data as inputs to the block diagram model, processes the data, and sends it back to
the outside world through an output channel on the I/O board.

RTWT provides a custom Simulink block library. The I/O driver block library contains universal
drivers for supported I/O boards. These universal blocks are configured to operate with the library of
supported drivers. You drag-and-drop a universal I/O driver block from the I/O library the same way
as you would from a standard Simulink block library.

The real-time application uses the initial parameters available from the Simulink model at the time
of the code generation. RTWT provides the necessary software that uses the real-time resources on
the computer hardware. Based on the selected sample rate, RTWT uses interrupts to step the
application in real time at the proper rate.

At each sample interval of the real-time application, Simulink stores contiguous data points in
memory until filling a data buffer. Then, Simulink suspends data capture while the data is transferred
back to MATLAB through Simulink external mode. Data transfer runs at a lower priority in the
remaining CPU time after model computations are performed while waiting for another interrupt to
trigger the next model update. Data transferred to Simulink is immediately plotted in a Simulink
Scope block, or it can be saved to a MAT-file.

IV. Modeling the Motor Plant

When designing a digital control system, it is often practical and convenient to design the analog
control system prototype first. The analog control system is then converted into its digital
counterpart by adding appropriate interface devices and controller gains.

It is assumed that the motor feedback is monitored by an incremental encoder (MPG), which returns
change in position (i.e., velocity) per sampling time T; it is also assumed that the controller output is
communicated to the analog plant via a DAC.

An analog motor plant is often modeled by a double-integrator transfer function

K
Gp(9) = —2 = (1)

where ©O(s) represents position, M(s) manipulation or controller output, and the analog plant gain K
depends on the motor and its power supply parameters. If the DAC and MPG gains K, and K, are
taken into consideration, the digital position plant transfer function becomes

O(z) 1-e" Ky (02)z+1)
M(z)= s s 1= (z-1)°

(2)
where the position plant gain Ky is given by

Ko = (Kga) (Kp)(Kgp) 3)

Ky can be calculated from given motor, drive, and interface parameter values or, better yet, it can be
determined experimentally.

The digital velocity plant transfer function, €2(z)/M(z), can be determined by differentiating the
digital position plant transfer function. That is,

K, T’ K,T
o _ 5)E+DE-D (5D o
M(z) 2(z-1)? z(z-1)
where K is the digital velocity plant gain expressed by
K,=TKj (5)

Like Kg, K, can also be determined analytically from motor-related data or, preferably, it can be
determined experimentally. K represents the slope of the unit-step response of the motor plant,
normally a ramp function.

There wasn’t adequate information available for a mathematical description of the DC servomotor
plant considered for this investigation. Thus, it was decided to identify an approximate model for the
motor plant experimentally.

To obtain experimental information for modeling the motor plant, the real-time Simulink block
diagram shown in Figure 2 was used. A 1-volt-equivalent pulse command was applied to the motor
plant for 0.2 seconds — from 0.4 sec to 0.6 sec. The experimental results representing system input
and output are shown plotted in Fig. 3.

From the input-output graphs of Fig. 3, it is obvious that a model for this plant can be approximated
by an integrator whose gain is the slope of the output (ramp) — divided by the size/amplitude of the
input (reference) step which is 205 pulses/T, for the 12-bit, £10-volt DAC. Since values of the
variables time, input, and output have also been stored in memory, one can determine the slope of
the ramp by fitting the data points to a first-degree polynomial (straight line) using the MATLAB
function ‘polyfit’. This gives the open-loop velocity (integrator) gain as

slope = K, = polyfit(time(400:600), output(400:600),1)/205 = 1.122

Thus, assuming that T=0.001 sec, the corresponding open-loop position (double-integrator) gain
becomes Kg =K /T = 1122.

V. Velocity and Position Control

The motor plant is controlled in real time according to the control algorithm of Fig. 4. An advantage
of this control scheme is that it can be used to control velocity or position using velocity command
and feedback. It can be easily modified, however, for position command and/or feedback. Note that
the block marked “K -int” in Fig. 4 denotes software integration if the value of K =1, which is also
the setting required for position control. If K =0, on the other hand, the software integrator is

essentially bypassed, which is the setting if velocity, rather than position, is controlled.

For velocity or position control, the method chosen for tuning the digital PDFF controller uses the
ITAE (integral time absolute error) filter forms described in Reference [1]. A MATLAB program for
tuning either velocity (K,=0) or position (K,=1) controllers is shown in Table 1. The design of a 2-
order low-pass digital filter is also included in the code - in case it’s needed to smooth relatively
high-frequency noise that may be present in the control system. For our case, the cutoff frequency
for the filter was set at eight times the control system natural frequency, o,, which seemed to work
well. Note that if a notch, rather than a low-pass, filter is desired, the low-pass filter can be made
into a 2"-order notch (band-reject) filter by simply changing the first numerator coefficient of the
analog filter prototype (numf) from O to 1. In such a case, the notch frequency must be the noise
frequency.

For velocity control and using the ITAE tuning criterion for a system bandwidth o,=100rad/sec, a
plant gain K =1.122, and a sampling time T = 0.001 sec, the program of Table 1 calculates the
controller gains as

V2w, w’

=126.044, and KI =
K

() [

KP = =8912.7

The other gains are initially set at KV=0, KD=0, and KA = 0. If the feedforward gain KV is set equal
to KP, the controller becomes equivalent to the conventional proportional-plus-integral or PI
controller. Simulation and experimental plots for both cases are shown in Fig. 5. In addition to the
real-time scopes, the relevant signals were “captured” in real time and saved into a data file for
plotting.

Observe that the 150 (pulses/T) for the step size of the trapezoidal profile shown in the figures
corresponds to a velocity command of 1800 RPM. That is, if the desired speed of the motor is 1800
RPM, the encoder gain is 5000 (pulses/rev), and the sampling time is T=0.001 sec, the speed
command in (pulses/T) becomes

5000 A2) BEVEEE — 150 (pulses/)

S€C rev

Similarly for 1200 RPM, instead of 1800 RPM, the speed command becomes 100 (pulse/T).

For position control, the criterion chosen for tuning the digital controller is the ITAE filter form, also
described in Reference [1]. Using this tuning criterion and assuming a position-loop bandwidth of
wn=50 rad/sec, with T = 0.001 sec, we obtain the controller gains

2.15w?) 1.75
=22% 479, Ki= 22 = 111.41,and KD =21 = 0,078

0 KB KB

KP

The other gains are initially set as KV=0 and KA = 0. If the feedforward gains KV and KA are set
equal to KP and KD, respectively, the controller becomes equivalent to the more conventional
proportional-integral-derivative or PID controller. Simulation and experimental plots for both cases
are shown in Fig. 6. In addition to the real-time scopes, the relevant signals were also “captured” in
real time and saved into a data file for plotting.

VI. Conclusions

A practical scheme for controlling an industrial motor plant has been presented. The overall control
systems can be simulated on a Pentium microcomputer. The same microcomputer can also be used
to run the real-time application using off-the-shelf I/O boards and software.

Using computer simulation, a designer can change the specifications of the interface devices, can
substitute the pulse generator by an ADC converter, or test the control algorithm when external
disturbances enter the control loop. The computer simulation results and the actual/experimental
control system performance characteristics are in very close agreement.

The concepts presented or implied are general and can be applied to design and implement other
types of real-time control systems.

Bibliography

[1] G. A. Perdikaris, Computer Controlled Systems: Theory and Applications, Kluwer Academic Publishers, 1991,
reprinted in 1996.

[2] D. Y. Ohm, “A PDFF Controller for Tracking and Regulation in Motion Control,” Proc of the PCIM Conference on
Intelligent Motion, 1990.

[3] Real-Time Workshop User’s Guide, The MathWorks, Inc., 1994-2001.

[4] Real-Time Windows Target User’s Guide, The MathWorks, Inc., 2000.

Table 1. MATLAB program to calculate parameter values

% MATLAB Program to calculate controller (gain) values
% and digital filter (coefficient) values for Simulink model

wn = 100; % natural (control system) frequency
T =0.001; % control sampling time

Kw =1.122; % open-loop velocity-plant gain
Kth=Kw/T; % open-loop position-plant gain
Kda=10/(2*A11-1); % gain (scale) for +/- 10v, 12-bit DAC
Kdt=5000/2/pi; % MPG encoder gain (scale)
Km=Kth/Kda/Kdt; % (analog) motor plant gain

% determine tuning values for velocity/position control

% where Kr=0 ==> velocity, and Kr=1 ==> position control
Kr=0;

if Kr ==

else

% position-loop control - equate coefficients
% ITAE tuning: s"3+1.75*wnsA2+2.15%wn/2s+wn/3=

% =s"3+Kth*KDs*2+Kth*KPs+wn3
KP =2.15*wn*wn/Kth; % proportional gain

KI = wn*wn*wn/Kth; % integral gain
KD = 1.75*wn/Kth; % derivative gain

% velocity-loop control - equate coefficients
% ITAE tuning: s"2+sqrt(2)*wns+wn/A2=sA24+Kw*KPs+Kw*KI

KP = sqrt(2)*wn/Kw; % proportional gain

KI = wn*wn/Kw; % integral gain

KD =0; % derivative gain
end
KV =0; % velocity feedforward gain
KA =0; % acceleration feedforward gain
fn_sys=wn/2/pi; % control system bandwidth (Hz)
fn_f=8*fn_sys; % low-pass filter cutoff frequency
wn_f=2%pi*fn_f; % filter frequency in Hz
numf=[0 0 wn_{A2]; % analog prototype filter numerator
denf=[1 sqrt(2)*wn_f wn_{"2]; % and Butterworth/ITAE denominator
sysa=tf(numf,denf); % filter transfer function
sysd=c2d(sysa, T, prewarp',wn_f); % digital filter transfer function
[numdf,dendf, T]=tfdata(sysd,'z"); % and numerator-denominator form

Fig. 1. Simulink simulation block diagram of PDFF control system

+ reference
Step_205 . Analog
+ Output
[] Gain Analog Output
| ComputerBoards
Step_neg20s Cl10-DAS1602-12 [300h
I [N [m—
3 pulsesT - pulsesT_Filterad
1-z 14z
ET: D:ter —> - — | cutput_fit
P 1 o
Encoder Input [rarivative Zpoint_awve wokspace]
ComputerBoards) outout
C10-2UA002 [320h] P output_rpm
watkspace i hsp 3 el
B0/5000/T (I
RPW_scale output_rpm

Fig. 2. Simulink (external mode) block diagram of open-loop motor plant system.

-} reference _ (O] x| <) pulsesiT M= E
l@morpp ABB B L & lem|ceo ABB B E &

0 0z 04 0F 0.8

ime offset;. 0 ime offset; [

(b) Encoder (MPG) output in pulses/T.

(a) Input step of 205 pulses/T or 1 volt.

Fig. 3. Experimental input-output results obtained from the real-time Simulink system of Fig. 2.

ref [pulsesparT
: DAC_volts
input_p/T ret & ok (pfT) - Output_P/T
1-z-1
gl 5 > :> 44:
»
T
i der KA_gain S0AS000/T manip)
Ry 1 2 fbk (RPh) Encoder
hl RPM_scale ™ Input
» >
—aain - Output Encoder Inputi
Saturation ComputerBoards
+ T 1 “C“amaog'“’;” CI0-QUADOE [320H]
Ll - —— (- 10 omputerBoards
- 1.z somz Tz CI0-DAS1602-12 [300h] (Encoden
1 W int KI_gain1 um
e _im Kr_int DAC_scale
Sum -
1-z-1 numdf 1.1
KD = | -— —
T dendf 1
KD_again
wel_emar(p/T) ot -9 KD_der Filt_LF_znd fbk_der
KFP_gain

m <
158
Clodk time (sec)

Fepeating Slider
Sequence Gain

Fig. 4. Real-time Simulink block diagram of PDFF control system

) rof & fbk (p/T)

leEllcee ABE B 4 &

200

Simulation Scope: Velocity, KV=0 Real-Time Scope: Velocity, KV=0

<) ref & fbk [psT)

lem(oce o BB

E=r

150 -

| e

Tirm - 0

Simulation Scope: Velocity, PI Control

<) ref & fhik (piT)

|@BEcr 2 &

M=k
B2 a %

Real-Time Scope: Velocity, PI Control

Welocity Contral: PI, wn=100, T=0.001

160
140

B
[}

=
[}

i}
[}

60

40

20

reference & feedback (pulses/T)

0

=20
0

Time (sec)

Real-Time “elocity Contral: PIl, wn=100, T=0.001 '

reference & feedback (pulses/T)

-20
0

15 2 25 3 35 4

Time (sec)

0.5 1

Simulation data: Velocity, PI Control

Real-Time data: Velocity, PI Control

Fig. 5. Simulation (left) and real-time (right) plots of velocity (K,=0) control; w,=100.

EEIEFEEE I

<} ref & fbk (p/T} M=l

|leallocrep BB @ L &

ime offset: 0

Real-Time Scope: Position, KV=KA=f

=] 3
|l a@E(ocr e ABR B A &

=3 ref & fbk [p/T]

=] E3
IEETEEEN EEIEEE

<} ref & fbk (piT)

ime offset: 0

Simulation Scope: Position, PID Contr

Real-Time Scope: Position, PID Contr

Position Contral: PID, wn=50, T=0.001
160 T

o
=

(o]
[mm]

T
'
L
]
'
]
+
'
'

""""" T

(]
[mm]

[ux]
=

________ L

o
=

i
=

]
]

reference & feedback (pulses/T)

o

1 2 3 4
Time [sec)

=20
0

Real-Time Position Control: PID, wn=50, T=0.001
160

{15 SRR ;

—
Lo N o |
o O

o0
=

o
=

.
=

]
[}

reference & feedback (pulses/T)

=

w---

1 2
Time (sec)

=20
o 4

Simulation data: Position, PID Control

Real-Time data: Position, PID Control

Fig. 6. Simulation (left) and real-time (right) plots of position (K,=1) control; w,=50.

